A New Formulation of Maximum Diversification Indexation Using Raoʼs Quadratic Entropy

Vous êtes ici

Accueil » A New Formulation of Maximum Diversification Indexation Using Raoʼs Quadratic Entropy
03 Septembre 2015
Types de publication: 
Cahier de recherche
Auteur(s): 
Gilles Boevi Koumou
Kevin Moran
Axe de recherche: 
Enjeux économiques et financiers
Mots-clés: 
Rao’s Quadratic Entropy
Portfolio Diversification
Maximum Diversification Indexation
Diversification Ratio
Most Diversified Portfolio
Classification JEL: 
G11

This paper proposes a new formulation of the Maximum Diversification indexation strategy based on Rao’s Quadratic Entropy (RQE). It clarifies the investment problem underlying the Most Diversified Portfolio (MDP) formed with this strategy, identifies the source of the MDP’s out-of-sample performance, and suggests dimensions along which this performance can be improved. We show that these potential improvements are quantitatively important and are robust to portfolio turnover, portfolio risk, estimation window, and covariance matrix estimation.

Contact: 

Carmichael: Département d’économique, Université Laval benoit.carmichael@ecn.ulaval.ca
Koumou: CIRPÉE et Département d’économique, Université Laval nettey-boevi-gilles-b.koumou.1@ulaval.ca
Moran: CIRPÉE et Département d’économique, Université Laval kevin.moran@ecn.ulaval.ca